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Abstract

This paper presents a detailed model of the railway track based on wave propagation, suitable for corrugation studies.

The model analyses both the vertical and the transverse dynamics of the track. Using the finite strip method (FSM), only

the cross-section of the rail must be meshed, and thus it is not necessary to discretise a whole span in 3D. This model takes

into account the discrete nature of the support, introducing concepts pertaining to the theory of periodic structures in the

formulation. Wave superposition is enriched taking into account the contribution of residual vectors. In this way, the

model obtains accurate results when a finite section of railway track is considered. Results for the infinite track have been

compared against those presented by Gry and Müller. Aside from the improvements provided by the model presented in

this paper, which Gry’s and Müller’s models do not contemplate, the results arising from the comparison prove

satisfactory. Finally, the calculated receptances are compared against the experimental values obtained by the authors,

demonstrating a fair degree of adequacy. Finally, these receptances are used within a linear model of corrugation

developed by the authors.

r 2006 Published by Elsevier Ltd.
1. Introduction

The track model presented here was first developed to study the process of periodic wear observed on the
rail surface due to regular traffic, identified as railway track corrugation. This wear, a well known fact on most
railway systems [1], mainly on subways, increases noise levels and could even cause damage to some
components of the track. Regular treatment, consisting of periodic grinding of the rails, merely removes the
symptoms and leads to high costs. For this reason, the problem must be investigated analysing the appearance
and development of the undulatory wear process by means of a model, which includes the main system
elements, so that a basic solution can be found from optimising track and vehicle parameters.

A number of models has been presented in recent years in an attempt to explain this phenomenon. The track
model used in each is a key factor to determine the mechanism to set the corrugation wavelength.
ee front matter r 2006 Published by Elsevier Ltd.
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Nomenclature

{an (x, t)} generalised displacements
(n ¼ 1; . . . ;N)

fn forces acting on the end sections
F vector N related to forces in the cross-

section of rail
G function corrugation growth indicator
H impedance matrix of the support
ki wavenumber
L rail section length
M matrix N�N related to inertia prop-

erties of rail
Nwf number of wave functions used for

calculating receptances of rail
Rt vector representing the part of the

load not contained in the waves held
back

R0 projection of the force applied to a
point on rail over the space of the
waves taken for the static case

Rs projection of the force applied over
the space of the waves taken for the
dynamic case

t time

T transfer matrix
{un} section functions (n ¼ 1; . . . ;N)
U state vector of span
V vector N related to longitudinal forces

in rail
(x, y, z) (m) rail displacements
Z impedance matrix
o (rad/s) rotational frequency, o ¼ 2pf

l, m Lamé coefficients of rail
li characteristic wavenumber
r density of rail
r stress tensor
e strain tensor
ui
R characteristic wave travelling towards

the right
ui
L characteristic wave travelling towards

the left
Uwfstc matrix of wave functions for the static

case
Uwfdyn matrix of wave functions for the

dynamic case
Wi characteristic wave shapes
Ui wave shape
P vector N related to force produced by

support
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Owing to the importance of track transfer functions in the prediction of frequencies at which corrugation is
more likely to appear, an improvement in the calculation of receptances or accelerances for both vertical and
lateral component allows to obtain these frequencies more accurately. Furthermore, an inadequate agreement
between experimental and calculated receptances could lead not only to a slight shift in frequency of
corrugation but also to an incorrect prediction of the probability of corrugation development.

One of the earliest comprehensive examinations of the dynamic behaviour of the track, much used in
subsequent corrugation models as for example in articles by Tassilly and Vincent [2,3], is provided by Grassie
[4]. However, as the authors have shown, the results obtained with a rail model using a Timoshenko beam do
not represent accurately enough the results observed in the experimental data for the lateral component, even
in the medium frequency range.

In order to include higher modes, Ripke models the rail head and foot separately as two Timoshenko beams
with an elastic coupling between them. In corrugation work by Ripke and Knothe [5], Hempelmann [6] and
Müller [7], this track model is used to characterise undulatory wear. This model, which examines vertical and
lateral behaviour of the track considers discrete support, and the rail is meshed with finite elements over the
entire length of the span.

Extending the finite element method has led to development of models, which improve the treatment of the
foot and the web, and so better results are obtained for modes with large cross-section deformations [8,9].
Thompson [10] added a model of these characteristics to the track model. The track model is considered to
have continuous support, and so in accordance with the theory of periodic structures, it is only necessary to
discretise a small section of rail (1 cm).

In recent years, Wu and Thompson [11,12] examined vertical and lateral rail dynamics separately by using
beams, and submitted further papers on the influence of a number of wheel sets on the track [13,14].

Gavric [15] and Gry [16,17] have calculated the frequency–wavenumber relation, and hence deformation of
the rail cross-section by using the finite strip method (FSM). When this method is used, it is only necessary to
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discretise the rail section in two dimensions instead of producing a 3-D mesh for a finite section. Moreover, the
track model proposed by Gry [16] considers discrete support using the theory of periodic structures.

In accordance with the work of these two authors and Mead [18], a track model based on FSM and the
theory of periodic structures is presented. The track model consists of an infinite rail whose section is
discretised accurately using linear or second order quadrilateral elements. The discrete nature of the support is
considered by the model. The dynamic characteristics of the infinite track, expressed through receptances, are
obtained from superposition of the waves travelling along the infinite rail with support. This model has been
implemented in MATLAB [19].

The precision of the model improves when increasing the number of waves taken into account.
Nevertheless, due to the nature of the structure itself, increasing the number of waves would require more
precision when calculating the corresponding eigenvalues.

In the numerical formulation carried out by Gry, which uses the transfer matrix and its inverse, certain error
in the calculation of eigenvectors is assumed, even, as in the case of Gry, when quite a low number of waves
was considered. However, since there is a great variation in the results as a function of wavenumber, as
observed by the authors, a large number of waves have been incorporated in the model presented in the paper.

Since MATLAB’s precision is insufficient to cope with all the relevant waves, the eigenvalue calculation is
carried out using the variable precision arithmetic in the MAPLE programme [20]. At the same time, a finite
section of track has been studied to compare results with those obtained by a commercial finite element
package.

Thanks to this comparison, the method to improve the results obtained by modal frequency response
analysis based on residual vectors, which is implemented in some finite element commercial packages (such as
MSC/NASTRAN [21]), has been extended to cover infinite structures, and implemented in the model
presented in this paper.

2. Railway track model description

2.1. Introduction

The FSM reduces the computational effort inherent to the finite element method, retaining versatility
to a large extent. Whereas polynomial functions are used in the finite element method for multidirec-
tional displacements, the FSM uses polynomial functions in given directions (the cross-section plane
for the rail) and continuous differentiable series in other directions (the direction along which the rail
extends infinitely in this case). These last series must comply with the boundary conditions on the end sections
of the structure [22]. The general form of the displacement function is thus expressed as a product of
polynomials and series.

In the case of rails, the displacement at a point (x, y, z) over a time interval t may be given using N arbitrary
section functions or modes, unðy; zÞ ¼ ðun

xðy; zÞ; u
n
yðy; zÞ; u

n
zðy; zÞÞ

T, as

uðx; y; z; tÞ ¼
XN

n¼1

anðx; tÞu
nðy; zÞ, (1)

where an(x, t) are the so-called generalised displacements depending on axial coordinates and time.
Section functions taking part in the development are, in principle, arbitrary. The rail is considered as an

infinite and homogeneous medium with Lamé coefficients, l and m and density r. Once the displacement field
has been defined using section functions and generalised displacements, strains and stresses can be found. By
applying the virtual work principle to a length of rail L, the equation describing the rail dynamics is calculated:

Fðx; tÞ � V0ðx; tÞ ¼ �M€aðx; tÞ. (2)

With boundary conditions:

Vð0þ; tÞ þPð0; tÞ ¼ Vð0�; tÞ, (3)

VðL�; tÞ þPðL; tÞ ¼ VðLþ; tÞ, (4)
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where a(x, t) is an N order vector of components an(x, t) and F(z, t), V(z, t), P(0, t) and P(L, t) are N order
vectors with their Nth components given by the expressions

F nðx; tÞ ¼

Z
SðxÞ

ðsyyen
yy þ 2syzen

yz þ szzen
zz þ syxqyu

n
x þ szxqzu

n
xÞdS, (5)

Vnðx; tÞ ¼

Z
sðxÞ

rx � u
n dS, (6)

Pnð0; tÞ ¼

Z
g0

f0 � u
n dS, (7)

PnðL; tÞ ¼

Z
g1

f1 � u
n dS, (8)

where S(x) is the cross-section at abscissa x; rx ¼ ðsyx;szx; szyÞ the stress vector in a direction parallel to axis x;
f0ðxg; ygÞ and f1ðxg; ygÞ the forces exerted by supports on contact lines g0 and g1, respectively; and terms
en

yy; e
n
yz y en

zz represent strains on section associated with function un.
Using the Lamé stress–strain relationship, F(x, t) and V(x, t) can be expressed as follows:

Fðx; tÞ ¼ Aaðx; tÞ þ Ba0ðx; tÞ, (9)

Vðx; tÞ ¼ Caðx; tÞ þDa0ðx; tÞ (10)

each of the elements in the A, B, C, D and M N�N order matrices consists of integrals whose integrands
depend on l, m, and r, the strain tensor elements and the displacement components.

Substituting F(x, t) and V(x, t) into Eq. (2) and applying the Fourier time transform to all variables, the
following equation is obtained:

Da00ðxÞ þ ðC� BÞa0ðxÞ þ ðo2M� AÞaðxÞ ¼ 0, (11)

where the convention of designating variable Fourier transforms with the variable name itself has been
applied, except that variable t has been eliminated.

Matrices D and G ¼ ðo2M� AÞ are symmetrical, whereas E ¼ C� B is anti-symmetrical, and this
characteristic shows that there are two opposite directions of wave propagation.

To solve the differential equation system (11), solutions of the type ekxU are tested, the system being thus
turned into a generalised problem of eigenvalues for complex scalar k, and U, N order vector defining the wave
shape:

ðDk2
þ Ek þGÞU ¼ 0. (12)

The 2N solutions of the system of equations constitute a set of free waves for the rail, i.e., they
represent the waves transmitted along the infinite rail without support. Once the complete set of
the 2N free waves of the system for this approximation has been obtained, Fourier transforms of
the N generalised displacements for each x, a(x) may be expressed in the 2N-dimensional wave vector
space, as

aðxÞ ¼
X2N

j¼1

aje
kjxUj . (13)

2.2. Introducing the support to the model

So far, a rail section of arbitrary length L, regardless of the support, has been analysed. Including the
support in the model requires a thorough analysis of the junction of two rail sections in the presence of the
support; but, above all, the discrete nature of the support along the rail requires the inclusion of basic concepts
of the periodic structure theory in the formulation.
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First of all, a state vector U for each span is defined; its components being the displacements at both ends of
the span. For span k, L being the length of the span, the state vector using generalised displacements is

Uk ¼
akð0Þ

akðLÞ

" #
. (14)

On the basis of the conventional linear and perfect periodicity hypotheses, a transfer matrix T between
consecutive spans can be established, so that the wave propagation equation can be written as

Ukþ1 ¼ TUk. (15)

To enable us to find the transfer matrix and to know how waves travel from span to span, the relationship
within a span k of the generalised forces acting on the end sections, �fn�1 and fn, with displacements of nodes
of the same sections uk�1 and uk, is first established. This defines the impedance matrix Z. This matrix can be
calculated from Eq. (10) expressing generalised displacements and their derivatives as superposition of free
waves.

At the junction of spans, k and k+1, there must be compliance with generalised displacement
continuity. Similarly, the balance between all forces involved must be verified, and this includes the response
of support, P.

From this, the span and support impedance matrix being known, the transfer matrix T is obtained:

T ¼
0 I

�Z�112 Z21 �Z
�1
12 ðZ11 þ Z22 þHÞ

" #
, (16)

where Z11;Z12;Z21 and Z22 are N�N submatrices constituting the impedance matrix elements; H the
impedance matrix of the support, which relates the force exerted by the support, P(L), with the generalised
displacements at the junction a(L); and I the N�N order identity matrix.

2.3. Analysis of the transfer matrix

From the definition of the transfer matrix in Eq. (15), it may be deduced that diagonalisation of T permits
uncoupling the problem, finding pure waves transmitted from one span to another. These free waves related to
the rail resting on the supports, represented by the pair (li,Wi), are designated as characteristic waves of the
track. Vector Wi defines the shape of the characteristic wave i of the section, whereas the argument of complex
eigenvalue li defines the wavelength, and its module, the attenuation along the axis x. On a periodic structure,
it can be shown that these eigenvalues appear on inverse pairs (li,1/li), corresponding, respectively, to waves
travelling towards the left and waves travelling towards the right.

If state vectors Uk and Uk+1 are expanded on the eigenvectors basis {Wi}, taking separately into account
waves travelling towards the right, uR

i and waves travelling towards the left, uL
i , the expressions for

generalised displacements obtained for the spans k and k+1 are as follows:

akðxÞ ¼
XN

i¼1

ðaiu
R
i ðxÞ þ biu

L
i ðxÞÞ,

akþ1ðxÞ ¼
XN

i¼1

ðliaiu
R
i ðxÞ þ ð1=liÞbiu

L
i ðxÞÞ. ð17Þ

These specific equations, to find generalised displacements at junctions (x ¼ 0 and L), lead to similar
expressions for the generalised forces by using the span impedance matrix concept.

2.4. Support model

The support model to obtain the support impedance matrix H, appearing in the transfer matrix, consists of
half a sleeper considered as a mass with six degrees-of-freedom coupled to the ground through a ballast-like
element, providing stiffness and hysteretic damping for each of the six degrees-of-freedom, three translations
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and three rotations. The rail is fastened to the sleeper through three damping springs simulating the pad.
These elements contribute stiffness and hysteretic damping and are located at three different nodes (two near
the end and one in the middle) on the rail foot, so as to allow the rail to roll on the pad. All these elements have
all three translation degrees-of-freedom.

The impedance matrix of the support is calculated establishing the sleeper balance under the action of the
ballast and a force exerted on the points shared by the rail through the elements constituting the pad.

2.5. Calculation of receptances

The procedure to calculate the track transfer function depends on the specific point on the rail. Two distinct
analyses are: studying the behaviour of the rail at a point inside the span, say at midspan, or at a point on the
rail over the sleeper, i.e., just at the junction of two spans. In both cases, compliance with two conditions for
the section containing the point is required, and they are the continuity of displacements and the balance of
forces.

3. Computation problems

One of the problem areas in the above method for track behaviour analysis is the large number of degrees-
of-freedom required to calculate characteristic waves for each frequency, if interpolation functions derived
from finite element analysis are used as cross-section functions in Eq. (1). Nevertheless, this calculation will
only be required once because, as Gry [16] has pointed out, and the authors of this paper have proved, few
wave shapes corresponding to calculated free waves for a low frequency, say 100Hz, used as section functions,
reproduce accurately enough the free waves of the system at any frequency within the range of the study for
the presented model, about 2000Hz.

For free wave calculation at a frequency of 100Hz, interpolation functions relative to the four- or eight-
node quadrilateral element are used as cross-section functions.

On the basis of the 2N rail free waves obtained with this discretisation, the number of wave functions 2Nwf

required to obtain accurate results is investigated. On rails studied by the authors, the first six free waves
include the classical deformation modes: elongation, vertical and lateral bending, both propagation and
decaying, and torsional waves.

Beyond Nwf ¼ 6, waves show the increasingly significant bending of the web, and the corresponding
sections show increasing distortion. The number Nwf of waves (2Nwf section functions in the model) selected to
describe the behaviour of the rail must be such that a compromise solution between accuracy and costs related
to computation difficulties is obtained.

Computation difficulties arise as a result of poor conditioning of the transfer matrix T. Sources of this poor
conditioning are: on the one hand, the presence of waves travelling towards the left and the right, bringing
about inverse exponential terms of the form ekL and e�kL; and on the other hand, the increasing value of the
real parts of the exponents of said expressions with increasing number of waves Nwf, thus taking into account
waves with increased attenuation.

Moreover, since the exponential terms depend on the length of the span, the longer the span of the rail
considered, the worse the conditioning.

This poor conditioning of the matrix T is an unavoidable characteristic; characteristic waves have associated
eigenvalues with modulus close to one, and eigenvalues, which, even with low Nwf, have a modulus of 1018 or
10�18. This track model has been implemented using software MATLAB 6 [19], but 15-digit default precision
implemented in MATLAB 6 is not sufficient. The authors of this paper have found that the application of the
LinearAlgebra module of version MAPLE 7 [20] to solve the problem of matrix T eigenvalues and
eigenvectors gives very accurate results, and with less computation costs than with other modules and previous
version of MAPLE (version 4 of MAPLE V [23]).

The authors have carried out an analysis on various tracks, consisting of different types of elements such as
UIC54 rail and UIC60 rail; monobloc and double block sleepers; ballast and concrete slab. This study has
proved that considering only the 11 least decaying waves (22 section functions), the model provides accurate
results for the receptances on the lateral component, provided that eigenvalues and eigenvectors of T are
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calculated with 50-digit arithmetic. For the vertical case, satisfactory results are obtained using the six least
decaying waves, classical beam waves, with 30-digit arithmetic.
4. Comparison with the results of a commercial programme (NASTRAN) for a finite section

The accuracy of the results obtained using the model based on Gry [16,17], utilising the FSM in conjunction
with the periodic theory was estimated by comparing the results obtained with those obtained by the
commercial finite elements programme MSC/NASTRAN [21] for the same section of track, which can have an
arbitrary number of identical spans connected by a supporting device.

This intermediate stage allows us to observe the considerable importance of incorporating residual vectors
in calculations of the transfer function by modal superposition. The residual vectors indirectly introduce the
contribution of non-participating modes in superposition. The importance of this may be appreciated by the
frequencies at which anti-resonances are produced in the transfer function, depending on whether the residual
vectors are incorporated or not. This may be seen in Fig. 1, showing the receptances for a beam of dimensions
similar to that of the rail.

Besides, regarding computing time, analysing with NASTRAN [21] a section of 150 spans of track
(minimum number of spans needed for accurate results in lateral component), with the rail cross-section
meshed with 175 nodes, as in the case of Gry, overflows the memory of a Pentium IV computer. Therefore, a
comparison of computing times between a 3-D solid model and the model developed by the authors should be
made for a more coarse mesh. If the cross-section is meshed with 32 nodes and is used along 30 spans, the
programme developed in MATLAB with the FSM and taking into account the 11 least decaying waves
requires a computing time 10 times less than that required for using 3-D solid elements. In fact, the typical
calculating time required for using the model developed by the authors for a frequency range of [100–3000] Hz
and taking into account the 11 least decaying waves is less than 20min.
5. Method to improve wave superposition

Therefore, to increase the accuracy of the track model, a method has been used to improve the results of
wave superposition, similar to the technique used in mode superposition with the modal truncation
augmentation method [24].
Fig. 1. Receptance for a beam with dimensions similar to rail obtained in NASTRAN using residual vectors (-) and without considering

residual vectors (?).
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Here we treat separately the static, or very low frequency, case and the dynamic case. A different number of
free waves may be taken in each case as section functions. It is evident that only when the number of waves
used for the static case exceeds the number in the dynamic case, a non-zero number of residual vectors may be
obtained; thus leading to improved wave superposition.

In accordance with a method similar to the case of the modes, and according to the Dickens algorithm [24],
vector Rt representing the part of the load not contained in the waves retained is calculated first. In the case of
the rail waves, this vector will be as follows:

Rt ¼ R0 � Rs, (18)

where

R0 ¼ UwfstcU
T
wfstcF, (19)

Rs ¼ UwfdynU
T
wfdynF, (20)

where R0 is the projection of the force applied to a point on rail F over the space of the waves taken for the
static case; Rs is the projection of the force applied F over the space of the waves taken for the dynamic case;
Uwfstc is the matrix of wave functions for the static case; and Uwfdyn is the matrix of wave functions for the
dynamic case.

We then calculate the displacement associated with the truncation vector Rt, using the receptance matrix
calculated for the static case. In accordance with the Rose algorithm [25], these displacement vectors are
directly associated with residual vectors of wave superposition.

These residual vectors may not be linear-independent among each other and with respect to the wave
shapes, and thus they must be used to find a set of combined wave shapes and linear combinations of residual
vectors, which are orthogonal among each other.

In the case of the rail, only three static loads are considered on the three main axes, and so a maximum of
three residual vectors will be obtained, which can be added to the waves retained.

When the new set of vectors has been obtained, the new matrices of the equation of movement for each
frequency are calculated, thus obtaining the system’s free waves. These new free waves are used to calculate the
track receptances.

The comparison between the model presented herein and the model created in MSC/NASTRAN [21] for a
track section of five spans with supports, where both include the contribution of residual vectors, is extremely
satisfactory, as shown in Fig. 2.
Fig. 2. Vertical (a) and lateral (b) receptance for five spans of track with support using residual vectors: (?) model in NASTRAN, (-)

model with FSM.
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6. Comparison with available published results

Removing the improvements introduced by the model not contemplated in the Gry [16] and Müller [7]
models, the results for the track model are compared to the results obtained by these models.

Firstly, the track data used by Müller [7] are introduced in the model presented by the authors.
Discretisation of the rail section (Fig. 3 (a)) and data for the support provide the receptances at midspan and
over the sleeper, as shown in Fig. 4. As we may observe, this result matches with that obtained by Müller [7].
Müller’s model, which considers the rail as two elastically connected infinite beams—head and foot—does not
contemplate deformations on the section plane. Thus, it does without propagative waves, the influence of
which on the results has been noted by the authors. It was for this reason that comparison with lateral
receptance was not carried out.
Fig. 3. Meshing for the UIC60 rail section used by Müller, consisting of 76 triangular-quadratic elements and 203 nodes (a); meshing for

the UIC54 rail section used by the authors of the article, consisting of 44 quadrilateral-quadratic elements and 181 nodes (b).

Fig. 4. Vertical receptance of the track calculated by the model presented in this article for the data used by Müller at midspan (-) and over

sleeper (- � -), and comparison with Müller’s model at midspan (� ) and over sleeper (J).
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Fig. 5. Vertical (a) and lateral (b) accelerance of track at midspan obtained by the model presented in this paper for parameters shown by

Gry (� ), and comparison with Gry’s model (-).

Fig. 6. Vertical (a) and lateral (b) accelerance of track over sleeper obtained by the model presented in this paper for parameters shown by

Gry (J), and comparison with Gry’s model (-).
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Secondly, the track data presented by Gry [16] are introduced in the model. This produced the accelerances
at midspan and over a sleeper, for vertical and lateral directions, shown in Fig. 5 (a, b) and Fig. 6. As may be
observed, comparison of these data with the results set out by Gry [16] is very satisfactory.

7. Application of the track model to the corrugation study

By way of an example of an application, the track model presented was used to examine the corrugation
process observed in a section of railway track around Bilbao [26–28]. The observed behaviour in this case
differs from the modulation produced along the rail, which is observed in the main corrugation examples cited
in the literature: those compiled by Grassie and Kalousek [1], and also those examined by Hempelmann and
Knothe [6] and by Clark et al. [29,30].
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Fig. 7. Comparison between the results obtained by the model presented in this paper (-) and the experimental data (?) for vertical

receptance at midspan (a) and over sleeper (b).

J. Gómez et al. / Journal of Sound and Vibration 293 (2006) 522–534532
The receptances calculated by this track model, now including all the above-mentioned improvements, are
compared to the experimental data obtained by the authors for this case. The track parameter values are given
in Ref. [28]. The type of rail used in this case is UIC54, and the meshing consists of 44 elements and 181 nodes,
as shown in Fig. 3 (b).

The characteristic waves required for calculation of the track’s vertical receptances for both midspan and
above a sleeper were obtained by taking the six waves on the free rail with least attenuation, and working with
30-digit arithmetic. For lateral receptances, the 11 waves on the free rail with least attenuation were used, and
50-digit arithmetic was employed. The comparison with the experimental results for the vertical component is
shown in Fig. 7 (a, b) and, as we may observe, this is satisfactory.

It is worthy of mention that Gry’s model was firstly used for studying the dynamics of the track located near
Bilbao. However, the results obtained by the model developed by authors when all the above-mentioned
improvements have been included are closer to the experimental results than the result obtained using Gry’s
model. This outcome may be due, on the one hand, to the fact that the authors’ model avoids the numerical
problems that appears with Gry’s model. On the other hand, the use of residual vectors in the authors’ model
makes results more accurate, as has been shown in Section 5.

Once the rail receptances are known, the corrugation model uses different modules to characterise the
undulatory wear.

The railway vehicle dynamic simulation package DINATREN, developed by Santamarı́a [31], has been
used to obtain the vehicle–rail contact parameters, including radii, forces and creepages.

The dynamic behaviour of the wheelset is analysed by means of the finite element method using the standard
package MSC/NASTRAN [21]. The types of elements used are hex8, eight node hexahedron, and wedge6,
triangular base prism.

In accordance with several authors (Frederick [32], Tassilly [2,3] and Hempelmann [6]), corrugation is
explained, specifically for short wavelengths, as a complex feed-back process, which can be triggered by the
presence of infinitesimal roughness on the running surface. This roughness induces an infinitesimal change of
the variables defining the contact between wheel and rail, which is transferred, for each excitation frequency,
to the vehicle and rail track dynamics. Their response will determine, through a wear mechanism, the
wavelength, which increases the depth of the troughs of the original profile. This leads to an exponential
corrugation development process governed by the real part of the exponent, known as function G. This
function will be the indicator showing the most probable frequency for corrugation appearance.

The function G obtained for the inner wheel in the leading axle is shown in Fig. 8. According to function G,
the corrugation process is likely to appear sooner at midspan around 200Hz. Taking into account the vehicle
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Fig. 8. G function showing the most probable frequency for corrugation appearance at midspan (-) and over sleeper (?).
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velocity for this application case, V ¼ 13:4m=s, the corrugation wavelength predicted by the model provides a
good match with experimental values.

On the basis of the linear model employed for the study of corrugation, and with the receptances obtained
from the same point where corrugation was observed, it can be concluded that the phenomenon of undulatory
wear, or corrugation, is provoked by the coincidence in frequency of the first lateral ‘pinned–pinned’ mode,
where the head and the foot of the rail vibrate in anti-phase, and the mode where the sleeper vibrates
independently, which produces an antiresonance in the vertical receptance.

8. Conclusions

This article presents a model to describe the dynamic behaviour of the track for both the vertical and the
lateral component, taking into account the discrete nature of the support, using the FSM and the theory of
periodic structures.

In order to contrast this model with a reference tool, the results obtained with the model for a finite section
of track were compared with those given by the commercial finite element programme MSC/NASTRAN [21].

The differences observed after such comparison led to the inclusion in the track model of the modal
truncation augmentation method [24,25] extended to wave superposition. This obtains greater accuracy of
results.

The track model results were also compared to those obtained by the infinite track models developed by Gry
[16] and Müller [7], always restricting for the model the capacities not taken into consideration by these two
authors. As the article shows, comparison with these models was satisfactory.

The track model presented here, including all the abovementioned improvements, was used to study a case
of corrugation on a specific track. The results obtained for receptances and for prediction of corrugation
match the values obtained from experiments.

In the application case studied in Bilbao, since the distance between sleepers was 1m, the studied frequency
range was at low frequency. However, the track model developed in this paper is thought to be used in a
general way to study problems of corrugation, independently of the frequency range where the phenomenon
takes place. This would allow to study others cases largely examined in the literature [5,6,8,16], where typical
distance between sleepers goes down to 0.6m, and so that the corrugation study must be carried out at higher
frequencies.
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